Search results for " Power Converter"
showing 10 items of 27 documents
Generalized power-angle control for grid-forming converters: A structural analysis
2022
Several control schemes have been recently proposed and studied as grid-forming controls for power converters. In all these schemes, the power-angle control loop is the part which defines the fundamental capabilities of the grid-forming control: that control loop governs in fact the inherent synchronization mechanism of the power converter, the power sharing with the other generation sources in the system and the oscillatory characteristics of the converter-based resource. This article introduces a general formulation for the power-angle control characterizing the grid-forming concept for power converters. The generalized power-angle control is based on a polynomial fraction formulation, an…
Design, implementation and experimental results of a wireless charger for E-bikes
2019
Based on the Inductive Power Transfer (IPT), the wireless energy transmission is increasingly representing an attractive solution for vehicle battery charging. Due to its high smartness, the wireless solution may be considered an interesting battery charging method for electric bicycles, as they represent light-weight and flexible means of transportation. According to the Vehicle-To-Grid (V2G) concept, the wireless power flow can occur in both the alternative directions: from the grid to the battery or in the opposite way. A Bi-Directional Inductive Power Transfer (BDIPT) system is therefore particularly convenient in the scenario of a multi-parking area. For the E-bike application, a bicyc…
A Measurement System for Power Inductors in Non-Linear Operating Conditions
2021
The exploitation of power inductors in switching converters outside the linear region requires detailed information on the magnetization curve that often is not included among those usually available on their datasheets. This paper proposes an automatic system in which the inductor is characterized in real operating conditions taking into account also the core temperature. It is based on a switching converter suitably controlled by a virtual instrument. The system was tested by retrieving the inductance vs current curves of two commercial inductors for core temperatures up to 105°C, showing the different behaviors of the magnetization curves. Results are coherent with data given by manufact…
Power System Oscillations with Different Prevalence of Grid-Following and Grid-Forming Converters
2022
The oscillatory behaviour of the power system is an aspect that is significantly affected by the increasing integration of converter-based generation sources. Several works address the impact of non-synchronous generation on the operation of the system from different points of view, but only a few studies focus on power-frequency oscillations with a prevalence of generation sources interfaced through power electronics. A lack of research can be found in particular in the comparative analysis of the two main control strategies for power converters, namely grid-following and grid-forming. The article aims to contribute to this direction, starting from a theoretical analysis of the two control…
Thermal Stability of a DC/DC Converter with Inductor in Partial Saturation
2021
Inductors operated in quasi saturation in dc–dc converters allow reduction of the core size and realization costs; on the other hand, they imply an increase of dissipated power that can jeopardize the thermal stability of the converter. In this article, this issue is studied by a mathematical model able to represent both the inductor nonlinearity and its temperature dependence. The main losses, such as ohmic, skin effect and magnetic, are taken into account in the model. The inductor is characterized by a polynomial curve whose parameters are a function of the temperature. Finally, the whole converter is modeled and simulation results, obtained on a boost converter, are compared with experi…
Simulation of a single-phase five-level cascaded H-Bridge inverter with multicarrier SPWM B-Spline based modulation techniques
2017
Multilevel Power Inverters are now often used to convert DC to AC voltage waveform. This kind of converter allows high power quality with low output harmonics and lower commutation losses with respect to the traditional ones in order to optimize this aspect. This paper presents a novel simulation analysis of the Multicarrier Sinusoidal Pulse Width Modulation (MC SPWM) techniques B-Spline functions based to control the switches of five-level single-phase cascaded H-bridge inverter. In order to verify the performance of the converter, the harmonic content of the voltage due to modulation techniques has been taken into account. Results highlight the comparison between different B-Spline functi…
New approach for harmonic mitigation in single-phase five-level CHBMI with fundamental frequency switching
2017
The main objective of this paper is to study and analyse the voltage output waveform of a multilevel inverter, to suggest a new approach for harmonic mitigation improving the converter performance. These last type of converters represent a new technology in the field of DC/AC electrical energy conversion, presenting advantages respect to the traditional converters. In fact, the multilevel power converters present a low harmonic content and a high voltage level. The paper considers a five-level single-phase cascaded H-bridge inverter and fundamental frequency modulation techniques. The voltage waveform analysis has allowed to identify a working area of the converter where there are lowest va…
Experimental analysis with FPGA controller-based of MC PWM techniques for three-phase five level cascaded H-bridge for PV applications
2016
The FPGA represents a valid solution for the design of control systems for inverters adopted in the field of PV systems because of their high flexibility of use. This paper presents an experimental analysis of the MC SPWM techniques for a three-phase, five-level, cascaded H-Bridge inverter with FPGA controller-based. Several control algorithms are implemented by means of the VHDL programming language and the output voltage waveforms obtained from the main PWM techniques are compared in terms of THD%. Simulation and experimental results are analysed, compared and discussed.
Controlled Fault-Tolerant Power Converters for Power Quality Enhancement
2013
Power quality depends generally on the interaction of electrical power with electrical equipments. If electrical equipments operate correctly and reliably without being damaged or stressed, a suitable level of power quality is assured. On the other hand, if the electrical equipment malfunctions, is unreliable, or is damaged during normal usage, power quality is poor and probably the economical loss could be important like the technical one. In the scenario of the Distributed Generation, power quality issues will be moreover important because an higher dissemination of power conditioning equipment will be requested and this obviously increases the sources of vulnerability of the electrical s…
Reducing DC Link Voltage Unbalance in a Fault-Tolerant Inverter
2014
Today, continuous working of power inverter drives is mandatory for several applications. Damages to materials, machines or even risks to human life have to be absolutely avoided. In the literature, fault-tolerant algorithms and architectures to achieve a successful fault handling are investigated. Researchers aim at reducing the number and cost of additional components, improving at the same time the inverter performances under postfault conditions. Cost, post-fault power derating and increasing distortion are usually conflicting requirements. In this paper, a fault-tolerant three phase inverter is presented. A reconfigurable architecture and a novel fault-tolerant algorithm is designed to…